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Talk Takeaways

First a deep learning primer!

Different types of neural networks encode
assumptions about specific data types.

Data types in the physical sciences are
geometry and geometric tensors.

Neural networks with Euclidean symmetry can
natural handle these data types.

a. How they work

b. What they can do
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A brief primer on deep learning

deep learning C machine learning C artificial intelligence



A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

model
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A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.
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A brief primer on deep learning

deep learning:
Add more layers.

@—».—vNL—».—» NL

deep learning 8



A brief primer on deep learning

data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

model data



A brief primer on deep learning

cost function:
A metric to assess how well the model is performing.

The cost function is evaluated on the output of the model.

Also called the loss or error.

cost function
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A brief primer on deep learning

way to update parameters:
Construct a model that is differentiable
Easiest to do with differentiable programming frameworks: e.q. Torch, TensorFlow, JAX, ...
Take derivatives of the cost function (loss or error) wrt to learnable parameters.
This is called backpropogation (aka the chain rule).

0 error(f(W, z),y)
OWij

AW;j = —n

< W <--|NL |- W - NLq.

way to update parameters



A brief primer on deep learning

convolutional neural networks:

Used for images. In each layer, scan over image with learned filters.
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A brief primer on deep learning Back

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

conv. nets 13



Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
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Neural networks are specially designed for different data types. . .
Assumptions about the data type are built into how the network operates.

Arrays » Dense NN 2D images » Convolutional NN Text » Recurrent NN

Components are independent. The same features can be found Sequential data. Next
anywhere in an image. Locality. input/output depends on
input/output that has come
before.
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Neural networks are specially designed for different data types. . .
Assumptions about the data type are built into how the network operates.

Arrays » Dense NN 2D images » Convolutional NN Text » Recurrent NN

Components are independent. The same features can be found Sequential data. Next
anywhere in an image. Locality. input/output depends on
input/output that has come
before.

What are our data types in the physical sciences?

How do we build neural networks for these data types? .



Given a molecule and a rotated copy,
we want the predicted forces to be the same up to rotation.

(Predicted forces are equivariant to rotation.)
Additionally, we should be able to generalize to molecules with similar motifs.
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Primitive unit cells, conventional unit cells, and supercells of the same crystal
should produce the same output (assuming periodic boundary conditions).
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We want the networks to be able to predict molecular Hamiltonians in any
orientation from seeing a single example.
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What our our data types?
3D geometry and geometric tensors...
...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
» Thus, we need neural networks that preserve Euclidean symmetry.

20



the laws of physics have Euclidean symmetry,
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

ﬁ( 7?775 = ZQZ 'UzXB qij ;J

B® @ @
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A Euclidean symmetry preserving network produces
the subset of symmetries induced by the input.
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(221)
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Geometric tensors take many forms. They are a general data type beyond materials.
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Geometric tensors take many forms. They are a general data type beyond materials.
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Geometric tensors only permit specific operations.

Neural networks that only use these operations are equivariant
to 3D translations, rotations, and inversion.

Equivariant vs. Invariant? Examples for a vector.

The magnitude of a vector *
is invariant to rotation and 7
translation.

The direction of a vector
is invariant to translation
and equivariant to

The location of a vector in rotation.

space is equivariant to
translation and equivariant 0’
to rotation.
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Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.

All learnable functions

All learnable All learnable

equivariant functions
functions constrained
by your data.

Functions you
actually wanted
to learn.



Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions

All learnable
equivariant
functions

All invariant
functions
constrained by
our data.

Functions you actually
wanted to learn.

= O

All learnable
invariant
functions.



Building Euclidean Neural Networks
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The input to our network is geometry and features on that geometry.

IO

mOl],[[ml]]],
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The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L

_ S Frequency
where L is a positive integer.

- Doesn’t change
Scalars l - O with rotation

Changes with
Vectors l — 1 same frequency
as rotation

[=0D1D2

{0: [[[mO]],[[ml]]1],
1: [[[vOx, vOy, vOz], [ 11,

[[vlix, vly, vl1z], [ 111}
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The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L

_ S Frequency
where L is a positive integer.

Spherical harmonics l - O Doesn’t Change
Ym L=0 @@ - with rotation
l |
Changes with
e $ o X =1
ot « 9 — same frequency
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Euclidean Neural Networks are similar to convolutional neural networks,
EXCEPT with special filters and tensor algebra!

Convolutional filters based on learned radial functions and spherical harmonics.
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Euclidean Neural Networks are similar to convolutional neural networks,
EXCEPT with special filters and tensor algebra!

Everything in the
network is a
geometric tensor!

Scalar multiplication
gets replaced with
the more general
tensor product.

Example: How do you “multiply” two vectors?

b;
Dot , : : —
product (az a; ak) bj = ¢
bx,
T 7k
Cross = 1. _ I
product X b= la a; ag| =¢
b by b
a; a;b;
Outer
product | @; | (b; b; br) = | a;b;
a arb;

Scalar,
Rank-0

Vector,
Rank-1

Matrix,
Rank-2

aibj
a;b;
akbj

a; by,
ajbk
ay b



Our unit test: Trained on 3D Tetris shapes in one orientation,
these network can perfectly identify these shapes in any orientation.

Chiral

TRAIN

TEST




Applications

Laundry list...

Inverting invariant representations

Molecular dynamics

Autoencoder for Geometry

Determining missing data input through symmetry
Electron density prediction for large molecules
Molecule and crystal property prediction
Conditional protein design
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Predict ab initio forces for molecular dynamics
Preliminary results originally presented at

APS March Meeting 2019.

Paper in progress.

Testing on liquid water, Euclidean neural networks (Tensor-Field
Molecular Dynamics) require less data to train than traditional
networks to get state of the art results.

MAE [meV/A] RMSE [meV/A]
TFMD, 100 27.9 38.20
TFMD, 1000 11.29 14.82
Deep-MD, 133,500 not reported 40.0

Simon
Batzner

/,"3 Qp\”
Y’ r ? 4
O- b
L | 'Q‘p ’v A
/ ‘, ’.
n”, T A
D 0 Q a
® 4
0 s N “

Data set from: [1]
Zhang, L. et al. E. (2018).
PRL, 120(14), 143001.
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Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.



Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

To encode/decode, we have to be able to
convert geometftry into features and vice versa.
We do this via spherical harmonic projections.

geometry features

®
0.4 o




Equivariant neural networks can learn to invert invariant representations.

Invariant features + Network can predict Which can be used
coordinate frame spherical harmonic to recover geometry.
projection...
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We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

Centers deleted
@ O ® ®
s @ [ ®
. ‘ i o 0
Q- | . S ye i . 2 ) B .
Pooling Pooling Unpooling Unpooling

Centers deleted



We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

@ @
@ @ @
@
0 Q 0 Q 0 5
Pooling Unpooling Unpooling




developers of e3nn
(and atomic architects)
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Euclidean neural networks operate on
points/voxels and have symmetries of E(3).
e The inputs and outputs of our network are
geometry and geometric tensors.
e Convolutional filters are built from spherical
harmonics with a learned radial function.
e All network operations are compatible with
geometric tensor algebra.

We expect these networks to be generally useful
for physics, chemistry, and geometry.

So far these networks have learned efficient
molecular dynamics models and can learn to
recursively encode and decode geometry.

Reach out to me if you are interested and/or
have any questions!

e3nn Code (PyTorch):
http://qithub.com/e3nn/e3nn

e3nn_tutorial
https://blondegeek.qgithub.io/e3nn_tutorial/

Tensor Field Networks
(arXiv:1802.08219)

3D Steerable CNNs
(arXiv:1807.02547)

Tess Smidlt
tsmidt@lbl.gov
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https://blondegeek.github.io/e3nn_tutorial/

Calling in backup (slides)!
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

(arXiv:1802.08219)

Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley
Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlineatrity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution
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Several groups converged on similar ideas around the same time.

Pull requests Issues Marketplace Explore

Tensor field networks: Rotation- and translati i O ©Watch-| 0 | | #Star | 2] [ ¥Fork | 26
(arXiv:1802.08219) ocode s 2 puleawes| Tensor field networks + 3D steerable CNNs
Tess Smldt*, Nathaniel ThomaS*, Steven Kearn¢ Settings = Euclidean neural networks (e3nn)
Points, nonlinearity on norm of tensors oo R Rironds —
Manage topics
CIebSCh'Gordan Nets: a Fu"y Fou rier Space © 793 commits iv 1 branch 0 packages © 2 releases 22 8 contributors & MIT
(arXIV. 1 806' 0923 1) Branch: point - | New pull request Create new file Upload files = Find file
RISI Kondor’ Zhen Llna ShUbhendu Trlvedl This branch is 20 commits ahead, 1 commit behind mariogeiger:point. i1 Pull request [ Compare
On/y USG tensor pI’OCIUCt aS nOI’I/Ineaf'Ity, n( (3 mariogeiger Merge pull request #4 from bkmi/point ... Latest commit 917dcb9 yesterday
me3nn Merge pull request #4 from bkmi/point yesterday
. - i examples refactor into e3nn 6 days ago
3D Steerable C N Ns : Learn I ng ROtatlona I Iy Eq i src/real_spherical_harmonics rsh: extended to handle float32 2 months ago
(arXIV' 1 80 7 0254 7) i tests GatedBlock(Op, Rs_out, ...) last month
. . . . . =) .gitignore change directories structure 6 months ago
Mario Geiger*, Maurice Weiler*, Max Welling, V\] s e o Lo S
Efficient framework for voxels, gated nonli 5 README.md refactor e3nn 10 days ago
E) setup.py rename e3nn last month
A . & README.md ‘
*denotes equal contribution = ’
E3NN

The group E(3) is the group of 3 dimensional rotations, translations and mirror. This library aims to create
E(3) equivariant convolutional neural networks.
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Spherical harmonics of a given L transform together under rotation.

D is the Wigner-D matrix.
Let g be a 3d
rotation matrix. . — — = — = lthas shape [(21 - 17 20 + 1]

I and is a function of g.

v

-
., ® T8, @ T

., @ +b, & +b,0@
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How do we represent geometric data with neural networks (inputs / outputs)?

=

Approach 1:

It doesn’t matter! It’s deep
learning! Throw all your
data at the problem and
see what you get!

T O@D Q@D Q@D Q- Q@

-0.21463
-0.38325
-1.57552
-2.34514
-1.78983
-2.72799
-0.81200
-0.98066
0.38026
1.14976
0.59460
1.53276

Approach 2:
Convert your da

invariant representations so
the neural network can’t

.97837
.66317
.03829
.13834
.36233
.85413
.13809
.45335
.48673
.66307
.88737
.37906

7

possibly mess it up.

.64566
.33310
.36774
.98192
.74025
.66708
.39070

.33136
.70334

.05450 .
129630 Coordinates are most

-36935 general, but sensitive to
translations and rotations.

Approach 3:

If there’s no model that
naturally handles
coordinates,

we will make one.

48



How to encode (Pooling layer). Recursively convert geometry to features.

Geomet
Yy

fpwood "N




How to decode (Unpooling layer). Recursively convert features to geometry.

Geomet
Yy

fpwood "N



The outputs of the network must have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square Task 2: Square to Rectangle

51



The outputs of the network must have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square

-0.8
& @
-0.4 Input is geometry with

trivial feature.
—0.2 ([1.0] on each point)

y o Output (after training) is “blob”
(linear combination of spherical
0.2 harmonics) with maximum at
new point location.
0.4

e <9

N P
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The outputs of the network must have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square

-0.8
G n
-0.4 Input is geometry with
trivial feature.
—0.2 ([1.0] on each point)
Output (after training) is “blob”
(linear combination of spherical

0.2 harmonics) with maximum at
new point location.

Y 0

0.4
e «9

2N

Task 2: Square to Rectangle

\

~0.2 Network is unable to learn task.
“Blob” is not overlapping with

YO target (orange points).

0.4

¢ ¥

9

© ¥ .N o \o. \O Yo
Q Q o N e [ ‘6
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The outputs of the network must have equal or higher symmetry than the inputs.
D2h > D4h / Task 1: Rectangle to Square Task 2: Square to Rectangle D4h > D2h X

P4 N R N

NN
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The outputs of the network must have equal or higher symmetry than the inputs.

fask 1: Rectangle to Square XTask 2: Square to Rectangle fask 3: Square to Rectangle with Symmetry Breaking

-
|

Add additional,
anisotropic
information to all
points to differentiate

X VS. Y.
V

55
https://blondegeek.qgithub.io/e3nn_tutorial/simple tasks and symmetry.html



https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

The outputs of the network must have equal or higher symmetry than the inputs.

fask 1: Rectangle to Square XTask 2: Square to Rectangle fask 3: Square to Rectangle with Symmetry Breaking

-
|

Add additional,
anisotropic
information to all
points to differentiate

X VS. Y.
V

56
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https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

The outputs of the network must have equal or higher symmetry than the inputs.

fask 1: Rectangle to Square XTask 2: Square to Rectangle fask 3: Square to Rectangle with Symmetry Breaking

R N /
o ?ﬁ\'

- -
// PR -
_r Learns to add
ad additional,
anisotropic
~~ | information to all
— = - points to differentiate
y & % RN X VS. V.

E— -

https://blondegeek.qgithub.io/e3nn_tutorial/simple tasks and symmetry.html
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https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

The outputs of the network must have equal or higher symmetry than the inputs.

fask 1: Rectangle to Square XTask 2: Square to Rectangle /ask 3: Square to Rectangle with Symmetry Breaking

,<\ -

-
Ve -
s -
_r Learns to add
ad additional,
anisotropic
~ ~ | information to all
— = - points to differentiate

¥ g RN X VS. Y.

@5 % V
Physics plays by the same rules! Physical processes must choose from energetically

degenerate options to “break symmetry”.
58
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We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Reduce ]\ / Create
geometry to R geometry from
single point. single point.

—Pp @ —P

] Single point with continuous ]
Discrete geometry latent representation Discrete geometry

(N dimensional vector)
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We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Reduce

Create
geometry to R N geometry from

\{ single point. single point. \/

. Single point with continuous ]
Discrete geometry latent representation Discrete geometry

(N dimensional vector)

@)

. VOO
Atomic structures are ’
hierarchical and can be /OXN//OX ® X ONON
constructed from T\ AN NN NG
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recurring geometric ( NN\ \\y;



We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)

and back again.

N

Discrete geometry

Atomic structures are
hierarchical and can be
constructed from
recurring geometric
motifs.

Reduce

Create
geometry to ]R N geometry from

single point. single point. \ (

Single point with continuous ]
latent representation Discrete geometry

(N dimensional vector)

+ Encode geometry + Decode geometry
+ Encode hierarchy + Decode hierarchy

(Need to do this in a recursive manner)
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To autoencode, we have to be able to convert
geometry into features and vice versa.
We do this via spherical harmonic projections.

NN
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To be rotation-equivariant means that we can rotate our inputs
OR rotate our outputs and we get the same answer (for every operation).
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For L=1 = L=1, the filters will be a learned, radially-dependent linear
combinations of the L =0, 1, and 2 spherical harmonics.

Random filters for
L=1>L=1...

(3 in L=1 channels by
3 out L=1 channels)

... as a function of
increasing r.

Time showing filter for
varying r, where
Osrsr_ -

ax

Radial distance is
magnitude

as a function of
angle




Properties of a system must be compatible with symmetry.

Which of these situations (

<

¢

<

<

¢

<

/

) are symmetrically allowed / forbidden?
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Properties of a system must be compatible with symmetry.

Which of these situations (

<
<

<

) are symmetrically allowed / forbidden?
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® X
® X
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

a©—><—© V4
o o X @«

e 9
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

@ @ 7
@ <@ X @
1

e 9
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Ground Truth

o
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AL b, A Og
/0 03
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Prediction of
network trained 2
with symmetry 8
breaking input )
and given ob
symmetry ok
breaking input BN
along z. ,

o

=042
0.4

~04
02

Prediction of
network trained
with symmetry
breaking input
but given trivial

- Input
o, (single scalar).

X

Superposition of 6
rotationally
degenerate solutions.
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